The capacity intermittent titration technique (CITT) was developed based on the ratio of potentio-charge capacity to galvano-charge capacity (RPG) method, to continuously determine the solid diffusion coefficient (D) of the intercalary species within insertion-host materials with a small voltage region. The linear equations of D vs the value of ratio of the potentio-charge capacity to the galvano-charge capacity (q) were given. By the CITT technique, the Li+ solid diffusion coefficients within LiMn2O4 at different voltages were determined. The results show that the values of D varied from 3.447 × 10−9 to 7.60 × 10−11 cm2/s in the voltage range of charge from 3.3 to 4.3 V as a function of voltage with “W” shape.
Rare earth-doped WC-Co cemented carbides with low carbon-containing level were prepared by adding mischmetal (mainly containing lanthanum and cerium) in the form of cobalt pre-alloyed powder during ball-milling. After sintering, the sinter skin (exterior) was observed and analyzed by scanning electron microscopy (SEM) and energy disperse X-ray spectroscopy (EDXS). The results show that during the sintering process lanthanum and cerium are separated and cerium predominantly migrates towards the surface forming precipitates containing oxygen. Thermodynamic analysis and polarization of cerium atom caused by the strong interaction between cerium atoms and high energy carbon atoms were used in explaining the observed phenomenon.
To evaluate the biocompatibility of MIM 316L stainless steel, the percentage of S-period cells were detected by flow cytometry after L929 incubated with extraction of MIM 316L stainless steel, using titanium implant materials of clinical application as the contrast. Both materials were implanted in animal and the histopathological evaluations were carried out. The statistical analyses show that there are no significant differences between two groups (P>0.05), which demonstrates that MIM 316L stainless steel has a good biocompatibility.
In order to obtain optimizing microarc oxidation coating on Mg alloy from a friendly-enviormental electrolyte free of Cr6+ and PO43−, constant potential regime was applied to produce it. The influence of potential on the morphology, composition, structure and other properties, such as microhardness and corrosion resistance were investigated by scanning electron microscopy (SEM), energy dispersive spectroscope (EDS), X-ray diffraction (XRD), hardness tester and electrochemical method. The results clearly show that oxidation potential plays an important role in the formation of coating’s structure and properties. The microarc oxidation coating is smooth and white, which consists of two layers. The external layer is loose and porous and enriched in Al and Si. Moreover, its content of Al and Si increases with the increasing operated potential. While the inner layer is compact and the content of Al and Si are lower than that of the external layer. The coating is composed of several phases and the major phases are MgAl2O4 and MgO, and the minor phases are Al2O3 and SiO2 when the potential is higher. The microhardness of coating is obtained the maximum at the potential of 45 V, so does the corrosion resistance.
Niobium suboxide powder was pressed and sintered in vacuum into NbO electrolytic capacitor sintered anode. High voltage and constant current formation experiment was performed on NbO electrolytic capacitor anode, during which electrolyte was 0.01% H3PO4 solution, temperature was 90 °C and current was 50 mA per gram sample. Through the relationship between anode voltage and time and scanning electron microscopy(SEM) images of invalidated anode and normal forming anode, invalidation manner and mechanism of NbO electrolytic capacitor anode were discussed. The results show that, the main invalidation manner of NbO electrolytic capacitor anode is not short circuit but open circuit, which is different to that of traditional Ta electrolytic capacitor anode. The reason of invalidation is that anode oxide film whose thickness increases gradually penetrates the “connection neck’ among anode powder particles, which leads to the open circuit invalidation of anode. Compared with Ta electrolytic capacitor, NbO electrolytic capacitor has better security.
Mechanical properties and microstructure of Al-Mg-(Sc, Zr) welded joint prepared by manual labor melt inert gas(MIG) welding method using Al-Mg and Al-Mg-Sc weld wire as filling materials were studied comparatively. The results show that the apparent recrystallization does not happen in heat-affected zone. It proves that Al-Mg(Sc,Zr) alloy has a high capability of resistance to weldiing heat-soften. Using Al-Mg-Sc welding wire as filling material can obviously refine the grains of weld seam and improve its strength. The layer of small equal-axe grains in fusion area improves the joint strength between welded metal and base metal. The coefficients of welded joints when Al-Mg-Sc and Al-Mg weldiong wire are used as filling material are greater than 0.90, respectively. The yield strength of welded joints with Al-Mg welding wire is only 187 MPa, one is as 287 MPa with Al-Mg-Sc welding wire, thus the working strength of the welded unit is greatly improved.
The spinel LiMn2O4 used as cathode materials for lithium-ion batteries was synthesized by mechano-chemistry fluid activation process, and modified by doping rare-earth Sm. Thesting of X-ray diffraction, cyclic voltammograms, charge-discharge and SEM was carried out for LiMn2O4 cathode materials and the modified materials. The results show that the cathode materials doped rare earth LixMn2−ySmzO4 (0.95⩽x⩽1.2, 0⩽y⩽0.3, 0⩽z⩽0.2) exhibit standard spinel structure, high reversibility of electrochemistry and excellent properties of charge-discharge. In EC: DMC(1 : 1)+1 mol/L LiPF6 electrolyte with discharge capacity more than 130 mA · h/g, and its capacity is deteriorated less than 15% after 300 cycles at room temperature and less than 20% after 200 cycles at 55°C. At the same time, Crystal Field Theory was applied to explain the function and mechanism of doped rare earth element.
The factors affecting the dimensional tolerance of powder injection molding (PIM), such as the selection of the powder and binder, the feedstock homogeneity, the feedstock thermal properties, the feedstock rheologic behavior, the debinding schedule and atmosphere and sintering temperature gradient were discussed. An attempt was made to develop a model to estimate the influence of important variables. The results show that a better understanding of these factors can provide some useful theoretical instructions for large scale production.
The availability using oxygen-rich powders to prepare ultrafine Ti(C,N)-based cermets was investigated. The deoxidation process, denitrification phenomenon and the effect of deoxidation on microstructure and mechanical properties of sintered samples were discussed, respectively. The results show that oxygen in the samples prepared even with high oxygen contained in starting powders can be almost completely cleaned away through suitable sintering process. The ultrafine oxygen-rich powders have a significant effect on microstructure, which promotes the formation of white core phase. A ultrafine Ti(C,N)-based cermet with mean particle size of 0.30 µm, uniform microstructure and excellent mechanical properties is successfully prepared. It is also found that there exists severe denitrification phenomenon in the preparation process of ultrafine Ti(C,N)-based cermet.
LiNi0.45Co0.10Mn0.45O2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 °C in air. The structures and characteristics of LiNi0.45Co0.10Mn0.45O2, LiCoO2 and LiMn2O4 were investigated by XRD, SEM and electrochemical measurements. The results show that LiNi0.45Co0.10Mn0.45O2 has a layered structure with hexagonal lattice. The commercial LiCoO2 has sphere-like appearance and smooth surfaces, while the LiMn2O4 and LiNi0.45Co0.10Mn0.45O2 consist of cornered and uneven particles. LiNi0.45Co0.10Mn0.45O2 has a large discharge capacity of 140.9 mA · h/g in practical lithium ion battery, which is 33.4% and 2.8% above that of LiMn2O4 and LiCoO2, respectively. LiCoO2 and LiMn2O4 have higher discharge voltage and better rate-capability than LiNi0.45Co0.10Mn0.45O2. All the three cathodes have excellent cycling performance with capacity retention of above 89.3% at the 250th cycle. Batteries with LiMn2O4 or LiNi0.45Co0.10Mn0.45O2 cathodes show better safety performance under abusive conditions than those with LiCoO2 cathodes.
The deformation behavior of dispersion strengthened copper alloy Cu-Al2O3 was studied by TEM. The results show that nano-scaled dispersed second phase not only increases dislocation density in matrix, but also has an important influence on the dislocation substructure. The presence of fine dispersed Al2O3 particles results in a uniform and random dislocation distribution in matrix copper and causes the difficulty in formation of dislocation cell structure and the decrease in the amount of cell structure during deformation. Deformation gives rise to much more dislocations and dislocation cells form more difficultly and the decrease in the cell size with the increase of dispersion degree.
LiNi0.5Mn1.5O4 was prepared under various conditions by one-step solid-state reaction in air and its properties were investigated by X-ray diffractormetry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD patterns show that LiNi0.5Mn1.5O4 synthesized under various conditions has cubic spinel structure. SEM images exhibit that the particle size increases with increasing calcination temperature and time. Electrochemical test shows that the LiNi0.5Mn1.5O4 calcined at 700 °C for 24 h delivers up to 143 mA · h/g, and the capacity retains 132 mA · h/g after 30 cycles.
TiO2 powder and TiO2 thin film on the surface of glazed ceramic tile were prepared by sol-gel method. The influences of different doping Cr3+ concentration on the photocatalytic activity of TiO2 were discussed, UV-visible and X-ray diffraction analysis were used to test the performance of TiO2 powder and film. The results indicate that photocatalytic activity of doping Cr3+-TiO2 thin film is higher than that of powder, and the interaction between Cr3+-doped and substrate can greatly enhance the photocatalytic activity. The results of X-ray diffraction and photoabsorption show that the Cr3+-doped energy level in TiO2 is 0.62 eV high from the top of valence band, which belongs to the type of deep energy level doping. On the basis of the semiconductor energy level theory and Cr3+ dopant energy level, the semiconductor energy level model of Cr3+ in TiO2 powder and thin film were established, and the doping mechanisms of Cr3+-doped in TiO2 powder and thin film were analyzed.
The thermal behaviors of the deposits on supported noble metal catalysts for synthesizing 2, 3, 5-trimethylhydroquinone by DSC were studied. The results show that the supported Pd catalysts have two exothermic peaks at around 312 °C and 435 °C in the DSC thermograms, respectively, while the supported Pt catalysts have one exothermic peak at approximately 345 °C. Therefore, it is supposed that the adsorptive states of deposits on supported Pt catalysts and supported Pd catalysts are different, which may be one reason leading to the stability difference between supported Pt catalysts and supported Pd catalysts.
A kind of complex additive mainly containing Al, Mg, F, and O was prepared. The synthetical performances of the property-modified prebaked anodes containing additives were tested in laboratory. On the basis of ideal testing results obtained, a large number of industrial prebaked property-modified anodes are prepared in a large-scale aluminum company. Further more, they are all used in 160 kA prebaked anode aluminum electrolysis cells. The statistic result show that, compared with common anodes, the property-modified ones enhance current efficiency by 0.78%, reduce energy consumption by 106.1 kW·h per ton aluminum and reduce carbon consumption by 11.6 kg per ton aluminum averagely.
Exchange current density of spinel LiMn2O4 was studied by linear polarization. The relationship of the kinetic property with the structure of spinel LiMn2O4 was investigated by studying the effect of the doping and surface coating on the kinetic properties of electrode material. The results show that the exchange current density of spinel LiMn2O4 electrode increases with the increase of the amount for lithium intercalation at first, and then decreases. The maximal exchange current density appeares at the 80%–90% lithium intercalation. The similar phenomenon was observed on the doped spinel LiMn2O4 electrode. Doping can enhance the exchange current density of spinel LiMn2O4 material. However, the degree of the doping effect varies with the doped element varying. Surface coating can also enhance the exchange current density of spinel material, and the increment of value is higher than that of doped ones.
The AAAc(1 : 1) was synthesized in water by As2O3 and Sb2O3 with molar ratio of 1 : 1. AAAc(1 : 1) was characterized by Raman, IR, TG/DTG, DSC, XPS and XRD. The results show that there are four peaks to vs of As-OH, As-O-Sb, Sb-OH and Sb-O-Sb in Raman spectra of AAAc(1 : 1) at 100 – 1 000 cm−1. The solution of AAAc(1 : 1) was also titrated with KOH solution. The titration results show that AAAc(1 : 1) is a hexabasic acid with dissociation constants of k1=3.62 × 10−2, k2=3.05 × 10−3, k3=6.43 × 10−6, k4 =9.78 × 10−8, k5=1.32 × 10−11, k6=3.87 × 10−12. AAAc(1 : 1) has a good solubility and stability in water, its solid obtained by free volatilizing water from its solution under air at ambient temperature is amorphous. Chemical and thermal analysis show that the composition of AAAc(1 : 1) is As2O5 · Sb2O5 · 8H2O in air at 25 °C. AAAc(1 : 1) has the structure of AsO(OH)2-OH-Sb(OH)4-O-Sb(OH)4-OH-AsO(OH)2 or As(OH)3-O-Sb(OH)4-O-Sb(OH)4-O-As(OH)3 (isomerism) through experimental determination and geometry optimization.
Electroless copper plating process of N, N, N′, N′-tetrakis (2-hydroxypropyl) ethylenediamine (THPED) chelating agent was researched comprehensively. The results indicate that plating rate decreases with the increase of concentration for THPED, CuSO4 · 5H2O and HCHO, pH value and bath temperature. The additive of K4[Fe(CN)6] · 3H2O, 2, 2′-dipyridyl and polyethylene glycol(PEG) decrease plating rate and K4[Fe(CN)6] · 3H2O has a bad effect on deposits quality, but 2, 2′-dipyridyl and PEG make deposits quality improve greatly. Low concentration of 2-mercaptobenzothiozole (2-MBT) increases plating rate and improves deposits quality, but decreases plating rate and worsens deposits quality when 2-MBT reaches 5 mg/L. The optimal conditions of this electroless copper plating process are that the concentration of THPED, HCHO, CuSO4 · 5H2O, PEG, 2, 2′-dipyridyl and 2-MBT are 16.8 g/L, 16.0 mL/L, 13.3 g/L, 0.5 g/L, 5.0 mg/L and 2.0 mg/L, respectively, pH value is 12.75, bath temperature is 30 °C. Plating rate reaches 9.54 µm/h plating for 30 min in the bath. The SEM images demonstrate that the surface of copper film is smooth and the crystal is fine.
Based on the data and methods provided by research literature, dispersing mathematical model of combustion process of asphalt smoke is set by theoretic analysis. Through computer programming, the dynamic combustion process of asphalt smoke is calculated to simulate an experimental model. The computing result shows that the temperature and the concentration of asphalt smoke influence its burning temperature in approximatively linear manner. The consumed quantity of fuel to ignite the asphalt smoke needs to be measured from the two factors.
A close-looped process based on the membrane separation and electrolysis is proposed to regenerate the copper etchant in-situ, recover copper on-site and reuse it. It is characterized by selective separation of copper from the spent etchant, which is accomplished by the ion exchange membrane-electrowinning, and at the same time the other components useful for etching are reclaimed. The experiments show that at least 90% of electricity efficiency for copper removal can be maintained and the optimum condition for membrane-electrowinning is: cell voltage 2–2.5 V, operating temperature 40–50 °C and current density 500–1500 A/m2. The regenerated etchant can be successfully reused to etch copper after adjusting its composition to the normal range, and its recycling property is as good as that of the fresh etchant after 50 times of use-disposal-regeneration cycles.
The influence of coal desulfurization by fungus was experimentally studied. The results suggest that fungus can effectively remove inorganic and organic sulfur in coal, and main influences of desulfurization by fungus of pH value, temperature, coal slurry concentration and coal granularity were studied by orthodox experiment and the optimal experimental conditions are as follows: pH value 6, temperature 45 °C, coal slurry concentration 10% and coal granularity 100 µm. Under above conditions, fungus can remove up to 44.96% total sulfur and 54.87% inorganic sulfur within two days, and their desulfurization rates will increase along with time. Compared with sulfolobas, desulphurization by fungus is steady and more effective, and has advantage of high speed.
A molecularly imprinting polymer (MIP) was synthesized via bulk polymerization under different conditions using anti-ague drug cinchonine (CN) as template. Infrared spectra (IR) results show that the template CN and functional monomer α-methyl acrylic acid (MAA) formed complexes before polymerization and the structure of complexes was simulated by Hyperchem. The results indicate that there are hydrogen bond or ionic bond between functional monomer and template molecule in acetonitrile solution. The MIP made in cold-initiated photo-polymerization has higher separation performance than that in the therm-initiated polymerization. The separation of the isomers CN and cinchonidine (CD) can be successfully obtained when its separate factor α reaches 1.82. Scatchard analysis suggests that the MIP recognizing CN with two classes of binding sites. The partition coefficient Kd, 1 and apparent maximum number nmax, 1 of binding sites with high affinity are 131.43 µmol/L and 58.90 µmol/g, respectively, while Kd, 2 and nmax, 2 of binding sites with low affinity are 2.32 mmol/L and 169.08 mmol/g, respectively.
Copper-bearing deposits of China are statistically analyzed in terms of ore grade, metal amount and ore tonnage. Each of grade and metal amount shows more or less a lognormal distribution. Analysis gives 10 copper metallogenic districts, each having specific densities of deposit numbers and copper reserves larger than 3. Based on the ratio of copper in ore value (RCu), Chinese copper deposits are classified into two groups: mainly copper-producing deposits (MC: RCu⩾0.5) and accessorily copper-producing deposits (AC: RCu<0.5). The grade-tonnage relation of MC deposits can be combined by two exponential functions approximating high grade (>3.0%) and low grade (<2.0%) parts. The critical copper grade, which is obtained from the low grade part of the relation, is 0.34%. Chinese copper resources are concluded to become pessimistic, because some mines are working with grades close to this critical value. Taking account of the fact that many copper deposits are actually polymetallic, Cu-equivalent grades, which are converted from ratios of metal prices to the copper price, are also introduced. The critical Cu-equivalent grade of MC deposits (0.43%) also suggests that Chinese copper resources are pessimistic.
The thermal conductivity of rock is an important parameter for the deep mine and the geothermal development. It is often not possible to measure the thermal conductivity of the rocks present in the deep strata, and the usual approach is to calculate thermal conductivity including mineralogy and porosity. The compositions of core samples from the MID01 borehole in the Björkö area were determined, and the minera composition was classified. The calculation of the thermal conductivity of rock in the borehole was carried out, and the main factors for the thermal conductivity of rock were analyzed. The results show that the calculated thermal conductivity of rock is reliable and useful for the design and calculation of geothermal development in the Björkö area.
Lining craze, as a common engineering damage, affects the bearing capacity and the safety of tunnels. To improve the capabilities of the surface crack detection in the tunnel lining, ground penetrating radar (GPR) was employed. The principle and method of GPR for cracks investigation of tunnel lining were expounded. As an application example, some field measurements in order to detect the depth of cracks for the tunnel lining were achieved in a new tunnel. All GPR investigations were made with the antennae of 1 GHz. The cracks of concrete structure were located, and the distributing and depth of cracks are inspected and estimated by GPR. The results of investigation show GPR is accurate and efficient to detect cracks of tunnel lining.
Anti-plane punch-through shear test and anti-plane four-point bending test are used to study the crack initiation and propagation under anti-plane shear (Mode III) loading. The tensile and shear stresses at the crack tip are calcualted by finite element method. The results show that under Mode III loading the maximum principal stress σ1 at crack tip is smaller or a little larger than the maximum shear stress τmax. Since the tensile strength of brittle rock is much lower than its shear strength, σ1 is easy to reach its critical value before τmax reaches its critical value and thus results in Mode I fracture. The fracture trajectory is helicoid and the normal direction of tangential plane with the fractured helicoid is along the predicted direction of the maximum principal stress at the notch tip. It is further proved that Mode I instead of Mode III fracture occurs in brittle rock under Mode III loading. The fracture mode depending on the fracture mechanism must be distinguished from the loading form.
Longtoushan Sn-polymetal deposit is a large-scale deposit of high-tenor. The ore-bodies occur in reef limestone of middle Devonian. There is much anthraxolite in reef limestone and ore-bodies. The anthraxolite is the postmature result of oil-gas’ thermal metamorphism. The close relationship of anthraxolite and Sn-polymetal deposit reveals the space-time relation between oil-gas evolution and Sn-polymetal mineralization. Sulfur isotope of Longtoushan deposit is close to oil’s sulfur in Devonian, which indicates obvious relationship between the sulfur’s source of deposit and oil-gas’ activity. The forming of Longtoushan deposit relates to exhalative-sedimentary mineralization in Devonian. Because of the favorable hydrocarbon-forming condition of Longtoushan reef and surrounding basin facies’ black shale and peat, coupling of ore-formation and hydrocarbon-forming occurs in seabed’s hydrothermal convection. The distributing of ore-forming elements indicates the presence of hydrothermal convection system. The thermal fluid containing organic matters conduces to Sn-polymetal elements’ activation and transfer, and provides catalyzing condition to the transforming from SO42− to S2−. The erosion action of brine containing organic acid to reef limestone induces the growing of crannies and karst’s caverns, which provides advantageous space to Sn-polymetal mineralization. The heat source of mineralization provides thermocatalysis condition to hydrocarbon-forming. When the circulatory fluid containing oil-gas enters the high-temperature region(>150°C), the oil-gas is decomposed and anthraxolite comes into being.
Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time non-stationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge, millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria.
Forecasting subtle traps by sequence stratigraphy and 3D seismic data is a sensitive topic in hydrocarbon exploration. Research on subtle traps by geophysical data is the most popular and difficult. Based on the sufficiently drilling data, log data, core data and 3D seismic data, sediment sequence of Qikou depression, Huanghua basin was partitioned by using sequence stratigraphy theory. Each sediment sequence system mode was built. Sediment faces of subtle traps were pointed out. Dominating factors forming subtle traps were analyzed. Sandstone seismic rock physics and its response were studied in Tertiary System. Sandstone geophysical response and elastic modulus vary laws with pressure, temperature, porosity, depth were built. Experimental result and practice shows that it is possible using seismic information forecasting subtle traps. Integrated using geology, log, drilling data, special seismic processing technique, interpretation technique, high precision horizon calibration technique, 3D seismic visualizing interpretation, seismic coherence analysis, attribute analysis, logging-constrained inversion, time frequency analysis, subtle traps object is identified and interpreted. Finally, advantage object of subtle trap in this area was determined. Bottomland sand stratigraphic and lithologic reservoirs in Qinan slope zone have been founded by means of high resolution 3D seismic data field technique, high resolution 3D seismic data processing technique and seismic wave impedence inversion technique.
New method for handling roof of the base successive mining is proposed, which is induction caving in the roof. The key is that it is made certain to the station of the space-time in the induction caving roof, as the stress is released with the mining process. And applying the catastrophe theory, the influencing factors of induction caving roof are studied in the emptied areas, such as the mechanical property of the surrounding rock, the area of the gob, the scope and dimension of tensile stress. The results show that the key factor is the area of the gob to the method of the induction caving roof. Then according to the geology and the ore characteristic, the three dimension FEM mechanical model is built in Tongkeng Mine, the laws of the tensile stress are analyzed to the space and the time in the roof with the mining, then it is rational design to the mine step and time of the handing the roof.
Eastern Tianshan, a cardinal part of Northern Xinjiang compound continental crustoblock, is located in the east of Tianshan Diwa region. By analysis of regional geological and geophysical data, and by using crustobody theory and researching methods, this region can be divided into three sectors of different crustal structure. During Proterozoic to Eopaleozoic, the spreading and closing of Northern Tianshan Sea, on the foundation of disparate continental basements of each sectors, the transversal heterogeneity of tectonic movement and evolution resulted in the diversity of crustal structure and material formations. The metallogenic evolution indicated that different geotectonic evolution periods had not only different characteristics of mineralization commodity and mineral deposit types, but also the progressive mineralization feature. In Neopleozoic, the closing of Northern Tianshan Sea from north to south and the difference of transmeridional tectonic deformation and magmation formed in the movement constituted the different metallogenic environment in shallow crust. Furthermore, it brought on the diverse Cu-Au-polymetal mineral deposit types and metallogenetic epoch from north to south and from west to east.
Similar materials such as cement, gypsum and sand are options for simulating limestone characteristic. A series of reasonable proportions are chosen to do similar experiments of Karst roof based on the proportions testing of small samples indoors. Applying on ultrasonic, the velocities of transverse wave and vertical wave of similar samples have been inspected with the sound wave instrument. Dynamic modulus of elasticity and Poisson’s ratio of the samples have been educed. According to the testing data, the relationship between the transverse wave and vertical wave velocity, compressive strength and anti-bend strength are analyzed. It has been proved that the vertical wave velocity is better for reflecting compressive strength and anti-bend strength of similar materials than the transverse wave velocity. The vertical wave velocity increases with the strength and dynamic modulus of elasticity.
The dynamic impedance function of pile in visco-elastic material considering axial loads under lateral dynamic force was analyzed, and the beam dynamic differential equation was used to induce the dynamic impedance function. After analyzing the edge conditions, the dynamic impedance functions were deduced. Contrasted with the result that does not consider axial loads, the axial loads have obvious influence on the dynamic impedance function. And the results show that the dimensionless parameter of the dynamic impedance will change from 6% to 9% when considering axial loads, and dimensionless parameter of the dynamic impedance of the coupling horizontal-sway will increase by 31%.
Clay-solidified grouting curtains are commonly used for remediation by containment or pollution prevention, in addition to their use as a barrier to water flow in municipal solid waste(MSW) landfills. A hydrological model of water flow and a hydrodynamic model of contaminant are presented to simulate the migration of leachate through clay-solidified grouting curtain in MSW landfills, with particular attention paid to the role of diffusive and adsorptive fluxes in contaminant transport. The models were applied to simulate the sensitivity of the curtain’s behavior to changes in parameters, such as thickness, depth, permeability coefficient, diffusion coefficient, resistance coefficient and concentration, and also to demonstrate the contaminant distribution on the evolution of travel time and offset distance of clay-solidified grouting curtain in landfills. It is found that a part of leachate components stays or is retarded in clay-solidified grouting curtain by precipitate or exchange, the retention rate is closely related to composition of clay-solidified grouting curtain, more than 80%, and the maximum occurs at the cementclay ratio of 2 : 4 under experimental conditions. Contamination distribution is variable on travel time and offset distance, the highest concentration takes place where the contamination intensity is nearest to the pollution resource or takes place at early middle period of transport, and the pollutant attenuates gradually. The results indicate that claysolidified grouting curtain with a proper thickness, a low permeability coefficient and a high resistance coefficient might serve as a sufficiently effective vertical barrier against leachate seepage and contamination migration in MSW landfills.
By analyzing the abrasive theory of concrete diamond sawblade, the proposal that the diamond should be selected by its function in cutting concrete is presented. The part of the big grit diamonds cut rock, and the part of the small grit diamonds improve the wearability of the matrix. The contrast tests are done with different shapes of sawbaldes in split segment, slant “U” slot segment, sandwich segment, turbo segment and three-slot segment. The special shapes of sawblades can improve the effect of cooling and the removing ability of the rock powder. The data of tests show that the efficiency of cutting and the life of sawblades are improved by designing the diamond prescription and using the especial geometry of segment.
Numerical calculation for two integral transforms in 2.5-D transient electromagnetic forward is a difficult and key task, namely, the inverse Fourier transform and the inverse Laplace transform. Some effective algorithms for them were described. Based on the known algorithms in DC resistivity on wave-number distribution and selection, we proposed a principle on how to choose the least wave-number concerning the central-loop transient electromagnetic method. First, observe the behavior of transformation function curve with regard to wave-number in Fourier domain. In the light of its asymptote, ascertain the coverage scope of wave-number. Compared with analytic solution, the least wave-number in Fourier domain can be derived. Furthermore, the Laplace numerical inversion algorithm which needs only a few Laplace variables in pure real domain was also introduced here. The procedure was applied to forward modeling on transient electromagnetic field of a vertical magnetic dipole over uniform half-space to demonstrate them effectiveness and general applicability.
Super-highly reinforced concrete tube in tube structure is a developing structure system of high-rise building. The more reasonable derivation process of the multi-vertical-line-element model stiffness matrix is given. On the premise of pointing out the problems of present multi-spring element model, combined with present multivertical-line-element model for analyzing on shear wall, the model is expanded to spatial one, and the stiffness matrix of which is derived. Combined with hysteretic axial model and hysteretic shear model, it is suitable for columns, wall limbs and beams with all kinds of section form. Some examples are calculated and compared with test results, which shows that the models have relatively good accuracy. On the base of the experimental phenomenon and failure mechanism for tube in tube structure specimen, nonlinear seismic responses analysis program on the basis of the advantaged element model for tube in tube structure is developed. Calculation results are in good agreement with those of the pseudo-dynamic tests and the failure mechanism can be well reflected.
The near crack line analysis method was used to investigate a crack loaded by two pairs of point shear forces in an infinite plate in an elastic-perfectly plastic solid, and the analytical solution was obtained. The solutions include: the unit normal vector of the elastic-plastic boundary near the crack line, the elastic-plastic stress fields near crack line, law that the length of the plastic zone along the crack line is varied with an external loads, and the bearing capacity of an infinite plate with a center crack loaded by two pairs of point shear forces. The results are sufficiently precise near the crack line because the assumptions of the small scale yielding theory have not been made and no other assumption have been taken.
A multistage assessment index set is chosen based on the analysis of building fire safety system, whereby the weight of each index is determined through an analytic hierarchy process; a fuzzy synthetic assessment model for the building fire safety system is constructed, and the quantified result was obtained by using hierarchy parameter judgment. This fuzzy synthetic assessment method can quantify assessment result of the building fire safety system, so that the fire precautions may be accurately adopted, and the serious potential risk may be avoided. The application shows that this method possesses both objectivity and feasibility.
The problem of robust and reliable control design for linear uncertain impulsive systems with both time-varying norm-bounded parameter uncertainty and actuator failures was studied. The actuators are classified into two groups. One set of actuators susceptible to failures is possible to fail, the other set of actuators robust to failures is assumed never to fail. The outputs of the actuator failures are regarded as zero. The purpose is to design the state feedback controller such that, for all admissible uncertainties as well as actuator failures occurring among a prespecified subset of actuators, the plant remains asymptotically stable. A modified algebraic Riccati equation approach was developed to solve the problem addressed and a robust reliable control law was obtained. An numerical example was also offered to prove the effectiveness of the proposed method.
This study analyzes drift phenomena of deterministic crowding and probabilistic crowding by using equivalence class model and expectation proportion equations. It is proved that the replacement errors of deterministic crowding cause the population converging to a single individual, thus resulting in premature stagnation or losing optional optima. And probabilistic crowding can maintain equilibrium multiple subpopulations as the population size is adequate large. An improved niching method using clustering crowding is proposed. By analyzing topology of fitness landscape using hill valley function and extending the search space for similarity analysis, clustering crowding determines the locality of search space more accurately, thus greatly decreasing replacement errors of crowding. The integration of deterministic and probabilistic replacement increases the capacity of both parallel local hill climbing and maintaining multiple subpopulations. The experimental results optimizing various multimodal functions show that, the performances of clustering crowding, such as the number of effective peaks maintained, average peak ratio and global optimum ratio are uniformly superior to those of the evolutionary algorithms using fitness sharing, simple deterministic crowding and probabilistic crowding.
A design method for controllers and a comprehensive stability analysis for an acrobat based on Lyapunov functions are presented. Three control laws based on three Lyapunov functions are designed to increase the energy so as to move the acrobot into the unstable inverted equilibrium position, and solve the problem of posture and energy. The concept of a non-smooth Lyapunov function is employed to analyze the stability of the whole system. The validity of this strategy is demonstrated by simulations.
The limitations in existing measures for absorbing pressure impact in hydraulic systems were summarized in this paper. Based on the forming principle of the oil in a hydrostatic closed pressure chamber, the underlying reasons of the pressure impact were analyzed theoretically, the intrinsic laws that the extent of the pressure impact in hydraulic oil lines are affected by some factors, such as oil elastic modulus, oil line’s geometrical volume, and changing rate of oil volume versus time etc, were discussed. Experimental investigations into pressure impact in all pressure chambers because of shifting were conducted under different working conditions by employing a special experimental system. The effects of shifting time on pressure impact were studied. A new concept with universal meaning, i. e. optimal shifting time, and its characterizing parameter and the methods of shifting at optimal shifting time were also proposed. The results show that shifting time lag Δt is of rationality and maneuverability. The higher the working pressure, the shorter the shifting time.
The mechanism of particle swarm optimization algorithm is studied, and one can draw the conclusion that the best particle found by the swarm falling into local minima is one of the main reasons for premature convergence. Therefore, an improved particle swarm optimization algorithm is proposed. This algorithm selects the best particle with roulette wheel selection method, so premature converging to local optima is avoided. At last, the improved particle swarm optimization algorithm is applied to optimization of time-sharing power supply for zinc electrolytic process. Simulation and practical results show that the global search ability of IPSO is improved greatly and optimization of time-sharing power supply for zinc electrolytic process can bring about outstanding economic benefit for plant.
The robustly asymptotical stability problem for discrete-time nonlinear systems with time-delay was investigated. Positive definite matrix are constructed through Lyapunov functional. With the identity transform, property of matrix inverse and S-procedure, a new sufficient condition independent of the size of time-delay for robust stability of discrete-time nonlinear systems with time-delay is established. With Schur complement, another equivalent sufficient condition for robust stability of discrete-time nonlinear systems with time-delay is given. Finally, a sufficient condition dependent on the size of time-delay for robust stability of discrete-time nonlinear systems with time-delay is obtained. A unified approach is used to cast the robust stability problem into a convex optimization involving linear matrix inequalities.
A general scheduling framework (GSF) for independent tasks in computational Grid is proposed in this paper, which modeled by Petri net and located on the layer of Grid scheduler. Furthermore, a new mapping algorithm aimed at time and cost is designed on the basis of this framework. The algorithm uses weighted average fuzzy applicability to express the matching degree between available machines and independent tasks. Some existent heuristic algorithms are tested in GSF, and the results of simulation and comparison not only show good flexibility and adaptability of GSF, but also prove that, given a certain aim, the new algorithm can consider the factors of time and cost as a whole and its performance is higher than those mentioned algorithms.
The hydraulic flexible manipulator system is divided into two parts: flexible arm dynamics and hydraulic servomechanism, a driving Jacobian is derived to connect these two parts. Taking hydraulic actuator force as virtual input, a singular perturbed composite model is formulated and used to design composite controllers for the flexible link, in which the slow subsystem controller dominates the trajectory tracking, and then a fast controller is designed to damp out the vibration of the flexible structure. Moreover, the backstepping technique is applied to regulate the spool position of a hydraulic valve to provide the required force. Simulation results are provided to show the effectiveness of the presented approach.
The wear failure course of gas-valve/valve-seat in engine was investigated with a simulating tester. The results show that the failure of the contact conical surface is mainly caused by the elastic and plastic deformation and the fatigue micro-crack and spalling. The creep-deformation and corrosion atmosphere accelerated wear failure course at the high temperature. The wear failure course of the gas-valve/valve-seat in engine follows general wear rules of mechanical elements, but the rate of wear in the sharp wear stage is faster.
Based on a theoretic hypothesis that income inequality has both positive and negative effect on economic growth, this paper analyzes the influence of income distribution differences on economic growth of China by establishing a multivariate linear regression model. The influence of income distribution difference on the economic growth of China changes with the change of time. During a short period immediately after China implemented reform and opening up policy, income inequality has a positive influence on the economic growth of China. However, along with the passing of time, such positive influence has become weaker and weaker and even convertes into negative effective. This paper proposes several advices with policy to restrain the difference of income distribution from expanding and weaken its negative effect on economic growth of China.
A new method was proposed to directly measure the effective resistance and distinguish the porous frequency in the regenerator of the microminiature thermoacoustic refrigerator. Measured results were compared with the flux gain factor and transmission loss of the real system. The results show that the agreement between the range of the porous frequency and frequency of the system is good, the method can be used to predict the porous frequency of the regenerator in production.